Effect of Benzodiazepines on Synaptosomal Ca²⁺ Transport in Mice with Different Phenotype of Emotional Stress Reactions

M. N. Levina and S. B. Seredenin

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 129, No. 3, pp. 304-305, March, 2000 Original article submitted December 14, 1999

The effects of 5 benzodiazepines on basal and K⁺-induced Ca²⁺ concentration in synaptoneurosomes from intact and stressed C57Bl/6 and BALB/c mice were studied *in vitro*. Membrane depolarization induced by low KCl concentrations produced different effects on Ca²⁺ accumulation by synaptoneurosomes from two mouse strains. Benzodiazepines applied *in vitro* exerted no effects on Ca²⁺ influx. In synaptoneurosomes from both C57Bl/6 and BALB/c mice exposed to emotional stress diazepam in a dose of 5 mg/kg reduced the basal and K⁺-induced Ca²⁺ accumulation.

Key Words: calcium; stress; benzodiazepines; Fura-2AM

C57Bl/6 and BALB/c mice are characterized by different behavioral reactions to emotional stress and different parameters ³H-diazepam binding to cerebral membranes. We previously found that the difference in binding correlates with the difference in cell membrane potential [2]. This prompted us to study more closely the mechanisms regulating membrane-receptor interactions. It is well known that Ca²⁺ plays an important role in the maintenance of cell homeostasis [4,11,12], reaction to emotional stress [4,7,9,11,12], and the effects of benzodiazepine tranquilizers [8]. This study was aimed at investigation of Ca²⁺ transport in synaptoneurosomes of inbred mice with genetically determined active (C57Bl/6) and passive (BALB/c) behavior in the open field test.

MATERIALS AND METHODS

The experiments were carried out on male C57Bl/6 and BALB/c mice (Stolbovaya Breeding Center) weighing 20-22 g. Before the experiments the animals (10 mice per cage) were kept in separate rooms for

at least 2 weeks with 12-h light/dark cycle on a standard diet with free access to water.

Emotional stress was modeled in an open field as described previously [1]. Synaptoneurosomes were isolated from the forebrain [5] and diluted to a protein concentration of 1.2-1.6 mg/ml. Protein concentration was determined as described elsewhere [10].

The preparations were loaded with Fura-2AM [14]. Fluorescence was measured on a Hitachi F-4000 spectrofluorimeter at 340 and 380 nm excitation and 510 nM emission wavelengths. Cuvettes were kept in a thermostat at 37°C. Ca²⁺ concentration was measured as described previously [6].

The data were processed statistically using Student's *t* test.

RESULTS

In synaptoneurosomes from BALB/c mice, changes in Ca²⁺ concentration after incubation with KCl were more pronounced than in synaptoneurosomes from C57Bl/6 mice, which agrees with the previous data on a more labile rearrangement in membranes of BALB/c mice in response to changes in membrane potential [2,13]. Similar regularity was observed in experiments with membranes from mice exposed to emotional stress (Table 1).

Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow

2+ concentration	Control	Stress	Placebo	Diazepam
BALB/c (<i>n</i> =7-11)	359.7±7.7	337.9±10.9	324.1±4.4*	282.2±3.2*+
C57BI/6 (n=8)	331.8±5.9	316.6±5.4	311.9±7.5	298.3±9.3*
BALB/c (n=3-4)	416.6±29.3	433.5±28.3	393.5±7.7	345.9±7.4+°
C57BI/6 (n=3)	345.3±4.6	384.6±5.5	329.6±8.3×	315.4±8.7×
BALB/c (n=3-4)	621.1±49.5	581.2±16.8	545.4±6.5	515.7±37.1
C57BI/6 (n=3-4)	505.4±23.6	551.6±21.3	521.1±16.9	488.4±27.9
	BALB/c (<i>n</i> =7-11) C57BI/6 (<i>n</i> =8) BALB/c (<i>n</i> =3-4) C57BI/6 (<i>n</i> =3) BALB/c (<i>n</i> =3-4)	BALB/c (n=7-11) 359.7±7.7 C57BI/6 (n=8) 331.8±5.9 BALB/c (n=3-4) 416.6±29.3 C57BI/6 (n=3) 345.3±4.6 BALB/c (n=3-4) 621.1±49.5	BALB/c (n=7-11) 359.7±7.7 337.9±10.9 C57BI/6 (n=8) 331.8±5.9 316.6±5.4 BALB/c (n=3-4) 416.6±29.3 433.5±28.3 C57BI/6 (n=3) 345.3±4.6 384.6±5.5 BALB/c (n=3-4) 621.1±49.5 581.2±16.8	BALB/c (n=7-11) 359.7±7.7 337.9±10.9 324.1±4.4* C57BI/6 (n=8) 331.8±5.9 316.6±5.4 311.9±7.5 BALB/c (n=3-4) 416.6±29.3 433.5±28.3 393.5±7.7 C57BI/6 (n=3) 345.3±4.6 384.6±5.5 329.6±8.3× BALB/c (n=3-4) 621.1±49.5 581.2±16.8 545.4±6.5

TABLE 1. Diazepam-Induced Changes in Synaptoneurosomal Ca²⁺ Concentration before and after Stress in BALB/c and C57BI/6 Mice (M±m)

Note. Significant difference: *in comparison with the control; *in comparison with stress; °in comparison with placebo; *in comparison with BALB/c.

Gidazepam (2×10^{-8} - 10^{-5}), phenazepam (10^{-7} - 10^{-4}), medazepam (5×10^{-9}), cinazepam (5×10^{-5}), and alprozalam (5×10^{-5}) exerted no effects on Ca²⁺ accumulation in synaptoneurosomes from both mouse strains.

In both BALB/c and C57Bl/6 mice, ex vivo administration of diazepam (5 mg/kg) reduced the synaptoneurosomal concentration of Ca²⁺ below both the control and poststress values.

These data indicate that changes in the membrane potential have a different effect on membranes of C57Bl/6 and BALB/c mice. More pronounced membrane modifications were noted in synaptoneurosomes from BALB/c mice. This supports the hypothesis that membrane modifications are responsible for reduced sensitivity to benzodiazepines and the development of a fear response in BALB/c mice [3]. It is likely that Ca²⁺ ions play a role in the development of emotional stress reaction in mice of both strains. However, further examinations are needed to explain similar shifts in Ca²⁺ concentration induced by emotional stress and diazepam.

REFERENCES

- P. M. Borodin, L. Shuler, and D. K. Belyaev, Genetika, 12, No. 12, 62-71 (1976).
- S. B. Seredenin and Yu. A. Blednov, Byull. Eksp. Biol. Med., 114, No. 11, 459-461 (1992).
- 3. S. B. Seredenin, T. A. Voronina, G. G. Neznamov, et al., Vestnik Ross. Akad. Med. Nauk, No. 11, 3-9 (1998).
- P. Csermely, I. Penzes, and S. Toth, Experientia, 29, No. 9-10, 976-979 (1995).
- T. M. DeLorey and G. B. J. Brown, J. Neurochem., 58, 2162-2169 (1992).
- G. Grynkiewicz, M. Poeniie, and R. Y. Tsien, J. Biol. Chem., 260, 3440-3450 (1985).
- 7. J. W. Lace, C. W. Schneider, and R. A. Hartline, *Pharmacol. Biochem. Behav.*, **24**, No. 4, 1137-1139 (1986).
- 8. J. Littleton and C. Brennan, Biochem. Soc. Symp., 59, 193-203 (1993).
- S. Morimoto, A. Fausto, S. J. Birge, and L. V. Aviouli, *Horm. Metab. Res.*, No. 18, 818-820 (1986).
- 10. G. L. Peterson, Anal. Biochem., 83, 346-356 (1977).
- 11. J. Vetulani, Can. J. Physiol. Pharmacol., 72, Suppl. 1, 524 (1994).
- 12. Y. Watanabe and T. Shibuya, Ibid., 445.
- 13. S. P. Welch and P. P. Bass, Biochem. Behav., 51, 57-63 (1995).
- S. L. Yates, E. N. Fluhler, and P. M. Lippiello, J. Neurosci. Res., 32, 255-260 (1992).